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This series is intended to demonstrate and teach operating system development from the 

ground up. 

Introduction 

Welcome! 

In this chapter we will cover something a bit more complex: The keyboard. We will learn 

about the keyboard itself, a little history lesson, keyboard internals, the 8042 and 8048 
microcontrollers, and developing a keyboard driver. 

This will also be the first device that we will program within this series. Excited? We have 

already learned how hardware programming works and have experience in it; now it time to 

put it to the test.Ready? This is also the first device that we will be programming that not 

only requires us to work with one controller but two. These controllers communicate with 

each other and our system. To make things more complex, both controllers have their own 

set of commands and way to work with them. Because of this, this chapter is fairly detailed 
in a couple of places. 

This chapter also includes the first interactive demo: A basic command line parser. Excited? 

This is also the first chapter that we look at device drivers in more depth: The importance of 
hardware abstraction and device drivers. 

Heres the list: 

 Keyboard - Back in Time and Keyboard Layout 

 Inside the keyboard 

 Keyboard Protocols 

 Keyboard Encoder 

 Keyboard Controller 

 Scan Code Sets 

 Keyboard IRQ 

Lets get going! 

Keyboard - History 

Back in time 

A keyboard is an input device that we use as a form of input to a computer. They were 

originally modeled off of a typical typewriter when they were first introduced. However the 

creation of the keyboard was not directly modeled from it. 



When the typewriter was patented in by Christopher Latham Sholes in 1877 several 

manufacturers and people further developed the original design. What evolved through a 

series of inventions was the Telegraph. Around this same time, inside of the 1930s, IBM was 

using Keypunches (punch card machines combined with typewriters) in their adding 

machines. Early computer keyboards adapted from both the keypunch and telegraph 
designs. 

The ENIAC (Electronic Numerical Integrator And Computer) was the first general purpose 

computer. The ENIAC used a punchcard reader as both an input and output device. in 1946. 

In 1948, the BINAC (BINary Automatic Computer) used an electromechanically controlled 
typewriter as both an input and output device. 

When does the keyboard evolve from these inventions? The computer keyboard that we all 

know does not evolve into what it is today until 1964 when MIT (with Fernando Corbató), 

Bell Laboratories and General Electric joined together to create the Multics (Multiplexed 

Information and Computing Service) machine. With the Multics, a new interface was at 

hand: They combined the technology of the cathode ray tube (CRT) used in televisions and 

electric typewriters to create a Video Display Terminal (VDT). The VDTs allowed a way for 

the users to be able to see what they were typing which made the computer alot more 

easier to work with. Over the course of the 1970s and 1980s almost all computers had a 

form of VDT technology and a form of an electronic keyboard for input. Through the years, 

CRT and LCD displays replaced VDT technology, and the electronic keyboard also became 

standard among all general purpose computers. 

Today, we use keyboards every time we go on a computer. Most of the keyboards layout 

still remains from the typewriter and the way it is used are the same. However, thanks to 

the new era of electronic devices keyboards now come in alot of different forms. From the 

generic plastic keyboards, keyboards the fold or have back lights in them, to even laser 

keyboards. 

Keyboard Layout 

The generic keyboard layout is known as a QWERTY keyboard because the characters 

QWERTY are the first five characters on a typical keyboard. The QWERTY layout was 

purposely designed during the typewriter era to slow down the typing speed of typists 

because of the original mechanical limitations of early typewriters. This was primarily to 

decrease the amount of time between each keypress and to give the print heads enough 

time so they do not jam. 

The QWERTY layout has been adapted in all keyboards to this day. 

Inside the keyboard 

What actually happens when you press a key on your keyboard? How can the keyboard tell 

the program what keys are down? The very text that is being read right now (thats right, 

me ;) has been input by keyboard. How can the keyboard do this? Lets take a look! 

Note: The exact details depend on the keyboards specific type and model. Because 

of this, I will only be covering a generic 102 key keyboard here. 



Opening the case 

You might be surprised by how keyboards came from being complex printed circuit boards 

(PCBs) to a single integraded board with its own microprocessor. If you were to open your 

keyboard, you might see something like this: 

 

Yep, thats it. Notice how simple this is. One circuit board and a grid. The grid might be a 

little hard to see in the above picture. However if you look close, you might be able to see 

the points in the grid andnotice that the points match to the key positions on a 

typical keyboard. This is known as the key matrix. In almost all keyboards, the circuits 

that make up the key matrix is broken between each point in the grid. Knowing that a key is 

above a point in the key matrix, when we press down the key, it presses the switch at that 

point completing the horizontal circuit and allowing current to run through it. The vibration 

of the line caused by the mechanical movement of the keys is known as bounce and is 

filtered out by the keyboards own microprocessor otherwise known as the Keyboard 

Encoder. Don't worry if this seems a little complex. We will look at everything more closely 

in the next couple of sections. 

Keyboard Encoder 

The microprocessor used by the keyboard is useually a form of the original Intel 8048, 

which just so happens to be also Intels first microcontroller. This controller is known as 

the Keyboard Encoder. The exact keyboard encoder used is very dependent on your 

keyboard. There are hundereds of different keyboard encoders but they all do basically the 

same thing. 

The rows and columns within the key grid are connected to 8 bit I/O ports on the keyboard 

encoder. When a key is down, the switch at that location within the key grid is closed which 

allows current to flow through it completing the circuit. This current enables the pin on the 

keyboard encoder of the correct ports that the key location corrosponds to. Thus, all the 

controller needs to do is scan its ports to see if a key is down or not by checking if a port 
line is active. 

If a key is down, the keyboard encoder looks up the location within its Read Only Memory 

(ROM) character map to see what the Scan Code is for that character and stores it in its 



internal 16 byte memory. The keyboards processor includes its own timer, 33 instruction 

set, and can even access 128K of external memory. Using its timer, it can determin if the 

key is down based on weather it is by user input or a bounce. If a bounce happens, it will 

useually be much faster then any human can input. If the key is still down when its timer 
reaches 0, it is reset and the character is inserted into its internal 16 byte buffer. 

It is important to note that there are two keyboard controllers that we can 

communicate with: The keyboard encoder inside of the keyboard and the keyboard 

controller inside on the motherboard. We will look at the other controller a little later, 

don't worry ;) For now, keep in mind that their are two controllers, and the keyboard 
encoder is one of them. 

The keyboard encoder communicates with the system through a method defined by 
the keyboard protocol. Lets take a look. 

Keyboard Protocol 

The keyboard encoder sends data as bytes to the motherboards onboard keyboard 

controller. The way it is sent depends on the protocal used by the keyboards interface. This 

is useually a 5-pin DIN connector, 6 pin Mini-DIN connector, USB connector, SDL connector, 

or wireless using an infired (IR) interface. 

The 5 pin DIN connector used for AT/XT keyboards normally is on the back of the computer 

and looks like this: 

  

1: Clock 2: Data 3: N/A 4: Ground 5: Vcc (+5V) 

The motherboard supplies power from the power supply unit (PSU) through the Vcc and 

Ground pins. The clock pin is used for synchronization between the keyboards data and the 
system clock. The data from the keyboard is sent as serial data over the data pin. 

The more common 6 pin Mini-DIN connector used for PS/2 keyboards is very simular: 

  

1: Data 2: N/A 3: Ground 4: Vcc (+5V) 5: Clock 6: N/A 

Nothing much new to add here. DIN does not really stand for anything in particular but 

refers to the standards group that developed it (Deutsches Institut für Normung, or in 
English, German Institute for Standardization). 

The SDL (Shielded Data Link) connector is very simular: 



  

A: N/A B: Data C: Ground D: Clock E: Vcc (+5V) F: N/A 

Universal Serial Bus (USB) connectors are a standard that is used by alot of different 

devices. Working with USB devices directly are a fairly complex topic. They only contain four 
pins: 1: Vcc (+5V), 2: Data-, 3: Data+, 4: Ground. 

USB Legacy Support is used on most modern computers that come with USB ports. This 

means that these computer motherboards can emulate USB keyboards and mice as PS/2 

keyboard and mice. Because of this: Communicating with a USB keyboard or mice 

using PS/2 compatable interfaces will work. In other words, do not worry if you have a 

USB keyboard or mouse as most of us do. The code and demo in this tutorial will still work 
fine thanks to the emulation provided by the motherboard. 

As you can see, the interfaces between the keyboard and the computer are not too 

complex. All they do is provide a way to send data as bits between the keyboard controller 

and the keyboard encoder. The data are routed to the onboard or integrated keyboard 

controller on the motherboard. The keyboard controller takes control. 

Keyboard Controller 

The keyboard controller used inside of the system case is useually a form of the 

original 8042 keyboard controller. The keyboard controller interfaces with the keyboard 

encoder through the keyboards protocol and provides a way to interface to it. On most 

newer systems, the keyboard controller is not a separate integrated circuit (IC) but 

rather part of the motherboards Super Input/Output (IO) controller that also houses 

the floppy disk controller (FDC), parallel port interface, serial port 

interfaces and mouse interface. Most newer systems super IO controller uses the Low 

Pin Count (LPC) bus rather then Industry Standard Architecture (ISA) on the 

southbridge of the motherboard. 

Scan Codes 

A Scan Code is a data packet that represents the state of a key. If a key is pressed, 

released, or held down, a scan code is sent to the computers onboard keyboard 

controller. There are two types of scan codes: Make Codes and Break Codes. A Make 

Code is sent when a key is pressed or held down while a break code is sent when a key is 

released. There is a unique make code and break code for each key on the keyboard. The 

entire set of numbers that represent all of the scan codes make up the keyboards scan 

code set. 

There are generally three different scan sets that the keyboard can use. However there is 

no easy way to determin what scan set it uses as the scan values are random. Because of 
this, you will need to use a lookup table to determin the key the scan code represents. 

Lets take a look at the scan code tables. Note: These tables are important! We will 

need to use these to determin what keys are pressed on the keyboard. Also note: All 

scan codes in these tables in are hexidecimal. 



These are fairly large tables so I decided to put them as a separate resource. Please see the 
tables in the resources section here. 

Lets have an example. If you press shift+A keys on your keyboard, what will be the make 

code sent to your computer? In order to better understand this, lets take a look at the 

sequence of events that happens. First the shift key is pressed, then the A key is pressed. 

Then the A key is released followed by the shift key being released. Assuming that the scan 

code set is the default scan code set for modern keyboards, the left shift key make code is 

0x12, break code is 0xF0 and 0x12. The make code for the A key is 0x1C while the break 

code is 0xF0 and 0x1C. So when this event occurs, the following scan codes will be sent to 
the computer: 

Key events: shift down  A down  A released  Shift released 

Scan codes: 0x12        0x1C    0xF0 0x1C   0xF0 0x12 

Looking at the above, we can see that the scan codes sent will be 0x12, 0x1C, 0xF0, 0x1C, 

0xF0, and 0x12. 

If you press a key and hold it, the key becomes typematic. In other words, the keyboard 

will keep sending the keys make code until the key is released or another key is pressed. 

Try it: Open up your favoriate text editor and hold down a key. After a short delay another 

of the same character will appear followed by a long series of the character. The typematic 

delay determins the amount of seconds to wait before entering typematic mode, and 

the typematic rate determins the amount of character make codes per second to send to 

the computer. During typematic mode, the character data is not buffered. If multiple keys 

are held down, only the last key held becomes typematic. 

Scan codes are very important to us. When a scan code is sent to the onboard keyboard 

controller, the keyboard controller stores the scan code into its internal memory. The 

keyboard controller then toggles its Interrupt Request (IR) line to high. If the interrupt 

line is not masked by the Programmable Interrupt Controller (PIC) then this will 

cause IRQ 1 to be fired. Even if the IRQ is masked, because the read buffer can be read by 

us through software, we can read the scan code and determin what key was just released or 
pressed. 

Keyboard Interface: Developing a Device Driver 

We have covered alot already in this chapter. We have looked at the history of the keyboard 

as in interface device, the QWERTY keyboard layout, and looked at the inside of the 

keyboard to see how it works and the primary components that make it work. We have also 

looked at scan code sets and the keyboards protocols. Don't worry if you do not understand 

everything yet, we will look at everything in more detail within the next couple of sections. 

We will also be developing device driver for our keyboard as well. Cool, huh? All of the code 

in this section will also be in the final demo. 

Keyboard Interfacing: Polling 

Remember from the previous section that there are two controllers when working with the 

keyboard? That is, there is the Keyboard Encoder inside of the keyboard as well as 

the Keyboard Controller on the motherboard. This is the first chapter in the series where 

we need to interface with several different controllers to control a single hardware device. 

http://www.brokenthorn.com/Resources/OSDevScanCodes.html


Thats right: We can communicate with both of these controllers. Well, kind of. When we 

send a command to the keyboard encoder, we still send it to the onboard keyboard 

controller however it reroutes it to the keyboard encoder over the keyboard protocol. 

Okay, so we can communicate with both controllers. How fun is that? Knowing that both 

controllers work with each other, they also communicate with each other. The keyboard 

encoder may send alot of different codes to the onboard keyboard controller to store. These 

can be scan codes or error codes. This allows us to also recieve information from both the 

keyboard encoder and onboard controller. 

All of this communication is done by simply using the IN and OUT instructions to read or 

write to the controller ports mapped in the IO address space. While we never had to worry 

what these ports are, understanding how IO mapping works with controllers becomes more 
important here. 

This is one way we can interface with the keyboard: We can manually communicate with the 

controllers to check if a key is down, up, or what not. This is known as polling the 

keyboard. This is how we are able to get the last scan code from the keyboard: by polling 
the keyboard controller for it. 

Keyboard Interfacing: Interrupt Request (IRQ) 

Remember from the PIC tutorial that the keyboard controller can be configured to use an 

interrupt line? We can configure the keyboard controller to issue IRQ 1 whenever a key has 

been pressed or released. This is the most common way to interface with the keyboard. 

Whenever IRQ 1 is fired, you should always test to see if a scan code has actually been sent 

to the keyboard controller. This is done by polling the keyboard controller to get the last 

scan code. 

Detail: 8042 Keyboard Microcontroller 

 
The original 8042 Microcontroller 

This is the microcontroller that interfaces with the keyboard encoder. The keyboard 

controller is part of a family of microcontrollers originally started with the 8042 

microcontroller. In modern computers, the keyboard controller is not a separate integrated 

circuit (IC) but its functionality is emulated by the motherboard itself. That is, the 
controller functionalty is integrated into the motherboard chipset. 

The keyboard controller can operate in two modes: AT Compatable Mode and PS/2 

Compatable Mode. Depending on what mode the controller is operating in, the way it 
interfaces to the outside world may differ. First, lets take a look at the controller: 



 

Yep. Thats it. Pins P10-P17 is the controllers input port. Pins P20-P27 is the 

controllers output port. And pin T0-T1 is the controller test port. The exact meaning of 

these pins depend on the mode of operation the controller is in. 

We will look closer at these ports later as there are commands that allow us to work with 
them. 

Most of the other pins are not important to us. I decided to add them here for completeness 
sake only; you do not need to know them. 

The pins XTAL 1 and XTAL 2 are for Crystal Oscillator Input. XTAL 1 can also be 

connected to ground if CLK is driven by an external source. Simularily, XTAL 2 can be 

connected to CLK if its being driven by an external source. 

RESET causes the controller to reset if pulled low (0). 

SS is the microcontrollers Single Step pin. CS is the Chip Select pin which is used for data 

register port interfacing. EA (No, not the company ;) ) is the External Access input pin. 

This will disable theOTP (One Time Programmable) ROM and enable commands to be 
sent to the controller from an external source. 

RD Output enable input; used for data register port interfacing. A0 is the Command/Data 

Register select input; used for data register port interfacing. WR is the write enable input 
line, used with data register port interfacing. 

SYNC is the clock output signal. D0-D7 is used for data register port interfacing. GND is 

the ground pin (Vss). Vdd is the +5V input pin. PROG is used as an address/data strobe to 
the 8243 during I/O expander access. Vcc is another +5V input pin. 



The keyboard controller provides us an interface for controlling how we want the keyboard 

to work. We do this by communicating with the keyboard controller through its ports which 

is mapped into the port I/O space. As you know, this means in order for us to communciate 

with the keyboard controller, we will need to use the IN and OUT instructions and know how 
it is mapped. Lets take a look. 

Port Mapping 

In the i86 architecture, the following ports are used to communicate with the keyboard: 

Keyboard Controller Ports 

Port Read/Write Descripton 

Keyboard Encoder 

0x60 Read Read Input Buffer 

0x60 Write Send Command 

Onboard Keyboard Controller 

0x64 Read Status Register 

0x64 Write Send Command 

This table is not to bad I hope ;) Basically: To send a command to the keyboard 

encoder, write the command byte to port 0x60. Before doing this however, you need 

to insure that bit 0 (output buffer full) of the keyboard controller status register is 0 to 

insure it is safe. If bit 1 (input buffer full) of the keyboard controller status register is 1 then 

data is in the input buffer ready to be read. Reading from port 0x60 will allow you to 

get this data from the keyboard encoder. The data read from the keyboard encoder will 

normally come from the keyboard. however you can also reprogram the microcontroller to 
return specific values as well. 

Writing a value to port 0x64 will allow you to send a command byte to the onboard 

keyboard controller. Reading from port 0x64 will allow you to get the status byte 

of the keyboard controller. 

Knowing all of this, we can easily provide routines for reading and writing command bytes 

and data to and from these controllers. We abstract the IO ports used by these controllers 
here: 

enum KYBRD_ENCODER_IO { 

  

 KYBRD_ENC_INPUT_BUF = 0x60, 

 KYBRD_ENC_CMD_REG = 0x60 

}; 

  

enum KYBRD_CTRL_IO { 

  

 KYBRD_CTRL_STATS_REG = 0x64, 

 KYBRD_CTRL_CMD_REG = 0x64 

}; 

We will not be going over the routines used to interact with these controllers just yet as it 

requires some knowledge of the commands of the controllers. 



Registers 

Status Register 

This might look familiar from When we covered enabling the 20th address line. To read the 

status register, simply read from I/O port 0x64. The value returned is an 8 bit value that 

follows a specific format. The format is a little different depending on the mode of the 

controller. 

Here it is again. I bolded the important ones: 

 Bit 0: Output Buffer Status 

o 0: Output buffer empty, dont read yet 

o 1: Output buffer full, please read me :) 

 Bit 1: Input Buffer Status 

o 0: Input buffer empty, can be written 

o 1: Input buffer full, dont write yet 

 Bit 2: System flag 

o 0: Set after power on reset 

o 1: Set after successfull completion of the keyboard controllers self-test (Basic 

Assurance Test, BAT) 

 Bit 3: Command Data 

o 0: Last write to input buffer was data (via port 0x60) 

o 1: Last write to input buffer was a command (via port 0x64) 

 Bit 4: Keyboard Locked 

o 0: Locked 

o 1: Not locked 

 Bit 5: Auxiliary Output buffer full 

o PS/2 Systems: 

 0: Determins if read from port 0x60 is valid If valid, 0=Keyboard data 

 1: Mouse data, only if you can read from port 0x60 

o AT Systems: 

 0: OK flag 

 1: Timeout on transmission from keyboard controller to 

keyboard. This may indicate no keyboard is present. 

 Bit 6: Timeout 

o 0: OK flag 

o 1: Timeout 

o PS/2: 

 General Timeout 

o AT: 

 Timeout on transmission from keyboard to keyboard 

controller. Possibly parity error (In which case both bits 6 and 7 

are set) 

 Bit 7: Parity error 

o 0: OK flag, no error 
o 1: Parity error with last byte 

We need to read the status register to determin the current state of the keyboard and to 

see what we can and cannot do. For example, we would not want to send a command to the 

keyboard if there is no keyboard plugged in! So we would want to read in the current status 

to test it before sending a command. 



We also need to take into coinsideration that the processor executes instructions alot faster 

then the keyboard controller can respond. Because of this, there are alot of times when we 

need to wait for the keyboard controller to be ready for the next command. To check this, 

we need to read in the status register and test bit 0 (Output Buffer Full) to see if it is okay 

to send the next command. If we do not do this, the previous command will be discarded 
and the new one will start executing, which may not be desirable. 

It is important to wait for the controller to be ready before sending another 

command or reading data from it. 

We can use bit masks for reading and writing to the status register. Here is the one from 

the demo at the end of this chapter. Notice how each bit coorosponds with the correct bit in 
the list shown above. 

enum KYBRD_CTRL_STATS_MASK { 

  

 KYBRD_CTRL_STATS_MASK_OUT_BUF = 1,  //00000001 

 KYBRD_CTRL_STATS_MASK_IN_BUF = 2,  //00000010 

 KYBRD_CTRL_STATS_MASK_SYSTEM = 4,  //00000100 

 KYBRD_CTRL_STATS_MASK_CMD_DATA = 8,  //00001000 

 KYBRD_CTRL_STATS_MASK_LOCKED = 0x10,  //00010000 

 KYBRD_CTRL_STATS_MASK_AUX_BUF = 0x20,  //00100000 

 KYBRD_CTRL_STATS_MASK_TIMEOUT = 0x40,  //01000000 

 KYBRD_CTRL_STATS_MASK_PARITY = 0x80  //10000000 

}; 

Great! So, all we need to do is to read from the keyboard controllers status register at port 

0x64. Then test whatever bit we want to check the status of it based on the bit masks 

above. 

So, to read from the keyboard controller status register, all we need is: 

//! read status from keyboard controller 

uint8_t kybrd_ctrl_read_status () { 

  

 return inportb (KYBRD_CTRL_STATS_REG); 

} 

Reading and writing: Input buffer 

To send a command, we first wait to insure the keyboard controller is ready for it. This is 

done by seeing if the input buffer is full or not. We test this by reading the keyboard 

controllers status register and testing the bit. If its 0, the buffer is empty so we send the 

command byte to it. (Remember all of this information is inside of the status register bit 

layout shown above.) 
//! send command byte to keyboard controller 

void kybrd_ctrl_send_cmd (uint8_t cmd) { 

  

 //! wait for kkybrd controller input buffer to be clear 

 while (1) 

  if ( (kybrd_ctrl_read_status () & 

KYBRD_CTRL_STATS_MASK_IN_BUF) == 0) 

   break; 

  



 outportb (KYBRD_CTRL_CMD_REG, cmd); 

} 

The keyboard encoder is very simular as you can see below. Remember that commands 

sent to the keyboard encoder are sent to the keyboard controller first. Because of 

this, you still need to insure the keyboard controller itself is still ready for the command. 
//! read keyboard encoder buffer 

uint8_t kybrd_enc_read_buf () { 

  

 return inportb (KYBRD_ENC_INPUT_BUF); 

} 

  

//! send command byte to keyboard encoder 

void kybrd_enc_send_cmd (uint8_t cmd) { 

  

 //! wait for kkybrd controller input buffer to be clear 

 while (1) 

  if ( (kybrd_ctrl_read_status () & 

KYBRD_CTRL_STATS_MASK_IN_BUF) == 0) 

   break; 

  

 //! send command byte to kybrd encoder 

 outportb (KYBRD_ENC_CMD_REG, cmd); 

} 

Keyboard Encoder Commands 

When writing a command byte to port 0x60 the keyboard controller transmits the value 

directly to the keyboard encoder. The following is a list of the command bytes: 

Command Listing 

Command Descripton 
 

0xED Set LEDs 
 

0xEE Echo command. Returns 0xEE to port 0x60 as a diagnostic test 
 

0xF0 Set alternate scan code set 
 

0xF2 Send 2 byte keyboard ID code as the next two bytes to be read from port 0x60 
 

0xF3 Set autrepeat delay and repeat rate 
 

0xF4 Enable keyboard 
 

0xF5 Reset to power on condition and wait for enable command 
 

0xF6 Reset to power on condition and begin scanning keyboard 
 

0xF7 Set all keys to autorepeat (PS/2 only) 
 

0xF8 Set all keys to send make code and break code (PS/2 only) 
 

0xF9 Set all keys to generate only make codes 
 

0xFA Set all keys to autorepeat and generate make/break codes 
 

0xFB Set a single key to autorepeat 
 

0xFC Set a single key to generate make and break codes 
 

0xFD Set a single key to generate only break codes 
 

0xFE Resend last result 
 



0xFF Reset keyboard to power on state and start self test 
 

All of the small commands are desribed in the above table. Lets take a closer look at the 
more complex commands, shall we? 

Command 0xED - Set Light Emetting Diods (LED's) 

This command is used to set the LEDs on the keyboard. The next byte written to port 0x60 

updates the LEDs on the keyboard and follows the format shown below: 

 Bit 0: Scroll lock LED (0: off 1:on) 

 Bit 1: Num lock LED (0: off 1:on) 
 Bit 2: Caps lock LED (0: off 1:on) 

All other bits must be 0. 

This command is kind of fun to play with ;) Here is an example routine that the demo uses 

to update the lights on your keyboard. Notice how it sets or clears the bit based on if a 

paramamter is true or false. Also notice that it writes first the command byte to the 

keyboard encoder followed by the data byte. They both go to the keyboard encoders 

command register. KYBRD_ENC_CMD_SET_LED is a constant for 0xED -- the command byte 

that we are using. No magic involved :) 

//! sets leds 

void kkybrd_set_leds (bool num, bool caps, bool scroll) { 

  

 uint8_t data = 0; 

  

 //! set or clear the bit 

 data = (scroll) ? (data | 1) : (data & 1); 

 data = (num) ? (num | 2) : (num & 2); 

 data = (caps) ? (num | 4) : (num & 4); 

  

 //! send the command -- update keyboard Light Emetting Diods (LEDs) 

 kybrd_enc_send_cmd (KYBRD_ENC_CMD_SET_LED); 

 kybrd_enc_send_cmd (data); 

} 

Command 0xF0 - Set alternatate scan code set (PS/2 Only) 

This command sets the scan code set to use. The next byte written to port 0x60 must be a 

byte of the following format: 

 Bit 0: Returns current scan code set to port 0x60 

 Bit 1: Sets scan code set 1 

 Bit 2: Sets scan code set 2 
 Bit 3: Sets scan code set 3 

All other bits should be 0. 

Command 0xF3 - Set autorepeat delay and repeat rate 



This command sets the autorepeat delay and repeat rate. Next byte written to port 0x60 

must be the following format: 

 Bit 0-4: Repeat rate. 0: approx 30 chars/sec to 0x1F: approx 2 chars/sec 
 Bit 5-6: Repeat delay. 00: 1/4 sec, 01: 1/2 sec, 10: 3/4 sec, 11: 1 sec 

All other bits must be 0. 

Return Codes 

As you know, the keyboard encoder communicates with the systems onboard keyboard 

controller. Most of the values returned will be a scan code but sometimes it may also return 

an error. These values are sent from the keyboard decoder to the system through port 

0x60. 

The returned value can be one of the following: 

Return Codes 

Value Descripton 
 

0x0 Internal buffer overrun 
 

0x1-0x58, 0x81-

0xD8 
Keypress scan code 

 

0x83AB Keyboard ID code returned from F2 command 
 

0xAA 
Returned during Basic Assurance Test (BAT) after reset. Also L. shift 

key make code  

0xEE Returned from the ECHO command 
 

0xF0 Prefix of certain make codes (Does not apply to PS/2) 
 

0xFA Keyboard acknowledge to keyboard command 
 

0xFC Basic Assurance Test (BAT) failed (PS/2 only) 
 

0xFD Diagonstic failure (Except PS/2) 
 

0xFE Keyboard requests for system to resend last command 
 

0xFF Key error (PS/2 only) 
 

Onboard Keyboard Controller Commands 

Some of these commands we have already seen in the A20 chapter. Alot of the commands 

listed here are new however and some are very low level. That is, some of these commands 

allow you to control specific lines connected to the controller. This is why I had to cover the 

controller's lines and how it interfaces with the keyboard device. Other commands allow you 

to read or write to the controllers internal RAM. 

Command Listing 

Command Descripton 
 

Common Commands 

0x20 Read command byte 
 



0x60 Write command byte 
 

0xAA Self Test 
 

0xAB Interface Test 
 

0xAD Disable Keyboard 
 

0xAE Enable Keyboard 
 

0xC0 Read Input Port 
 

0xD0 Read Output Port 
 

0xD1 Write Output Port 
 

0xE0 Read Test Inputs 
 

0xFE System Reset 
 

0xA7 Disable Mousr Port 
 

0xA8 Enable Mouse Port 
 

0xA9 Test Mouse Port 
 

0xD4 Write To Mouse 
 

Non Standard Commands 

0x00-0x1F Read Controller RAM 
 

0x20-0x3F Read Controller RAM 
 

0x40-0x5F Write Controller RAM 
 

0x60-0x7F Write Controller RAM 
 

0x90-0x93 Synaptics Multiplexer Prefix 
 

0x90-0x9F Write port 13-Port 10 
 

0xA0 Read Copyright 
 

0xA1 Read Firmware Version 
 

0xA2 Change Speed 
 

0xA3 Change Speed 
 

0xA4 Check if password is installed 
 

0xA5 Load Password 
 

0xA6 Check Password 
 

0xAC Disagnostic Dump 
 

0xAF Read Keyboard Version 
 

0xB0-0xB5 Reset Controller Line 
 

0xB8-0xBD Set Controller Line 
 

0xC1 Continuous input port poll, low 
 

0xC2 Continuous input port poll, high 
 

0xC8 Unblock Controller lines P22 and P23 
 

0xC9 Block Controller lines P22 and P23 
 

0xCA Read Controller Mode 
 

0xCB Write Controller Mode 
 



0xD2 Write Output Buffer 
 

0xD3 Write Mouse Output Buffer 
 

0xDD Disable A20 address line 
 

0xDF Enable A20 address line 
 

0xF0-0xFF Pulse output bit 
 

Thats alot of commands, huh? It would take a very long time to cover every command here, 

don't you think? We have already covered the A20 commands in the ealier A20 chapter. 

Because portability is a concern within this series, we will only be covering the more 

common commands listed above. However I encourage our interested readers to look for 
information on the commands not covered here. 

I am not going to cover example code until the next section. Rather we will just be looking 

at the commands themselves here and refer to them from the next section. 

Command 0x20 - Read Command Byte and reading controller RAM 

Look at the table above. Notice that the commands 0x20 - 0x3F is used to read the 

controller RAM? And yet, command 0x20 is used to read the command byte also. What is 

going on here? 

Actually, they both refer to the same thing. The command byte is stored within the 

controllers RAM. So, when reading the command byte, you are reading from the controllers 

internal RAM. Cool? 

When reading from the controllers RAM, the last 6 bits of the command refer to the the 

location within RAM to read from. On certain MCA systems, you have access to all 32 

locations within the RAM. On other systems, you can only access the bytes at 0, 0x13-0x17, 

0x1D, and 0x1F. 

These locations are: 

 Offset 0: Command Byte 

 Offset 0x13 (MCA): nonzero when password is enabled 

 Offset 0x14 (MCA): nonzero when password is matched 

 Offsets 0x16-0x17 (MCA): give two make codes to be discarded during password 

matching 

 Offset 0x1D: 
 Offset 0x1F: 

The command byte is the more important one here. It follows a specific bit format shown 
here. Don't worry - its not as complex as it looks: 

 Bit 0: Keyboard interrupt enable 

o 0: Disables interrupt 

o 1: Sends IRQ 1 when keyboard output buffer is full 

 Bit 1: Mouse interrupt enable 

o ISA: Unused 

o EISA / PS2 



 0: Disables mouse interrupts 

 1: Sends IRQ 12 when mouse output buffer is full 

 Bit 2: System Flag (Also bit 2 of status register) 

o 0: Cold reboot 

o 1: Warm reboot (BAT already completed) 

 Bit 3: Ignore Keyboard Lock 

o PS/2: Unused 

o AT 

 0: No action 

 1: Force bit 4 of status register to 1 (not locked) 

 Bit 4: Keyboard Enable 

o 0: Enable Keyboard 

o 1: Disable Keyboard by driving clock line low 

 Bit 5: Mouse Enable 

o EISA or PS/2 

 0: Enable Mouse 

 1: Disable mouse by driving clock line low 

o ISA 

 0: In PC Mode, use 11-bit codes, check parity and do scan conversion 

 1: In PC Mode, use 8086 codes, don't check parity and don't do scan 

conversion 

 Bit 6: Translation 

o 0: No translation 

o 1: Translate key scancodes. MCA type 2 controllers cannot set this bit 

 Bit 7: Unused, should be 0 

I do not think we will be needing this command so I have not written a routine for it. 

Command 0x60 - Write Command Byte and writing controller RAM 

The command bytes 0x60 - 0x7F are very simular to the above and allows you to write to 

the same RAM locations as described above. the more important one is reading byte 0 of 

the controllers RAM (The command byte, remember?) which can be done by sending 

command byte 0x60. 

Along with the above command, there is no routine written for this command for the end 

demo. 

Command 0xAA - Self Test 

This command causes the controller to perform a self test. It returns the result in the output 

buffer that can be read through port 0x60. It returns 0x55 if the test passed successfully, or 

0xFC if it failed. 

Here is an example routine. Notice how it first sends the KYBRD_CTRL_CMD_SELF_TEST 

command (command 0xAA) to the keyboard controller. Afterwords, it waits for the keyboard 

controllers output buffer to be filled with data. This will tell us if the test completed or not. 

When it completes, it returns true (test successful) if the result in the output buffer is 0x55, 
or false (test failed) otherwise. 

//! run self test 



bool kkybrd_self_test () { 

  

 //! send command 

 kybrd_ctrl_send_cmd (KYBRD_CTRL_CMD_SELF_TEST); 

  

 //! wait for output buffer to be full 

 while (1) 

  if (kybrd_ctrl_read_status () & KYBRD_CTRL_STATS_MASK_OUT_BUF) 

   break; 

  

 //! if output buffer == 0x55, test passed 

 return (kybrd_enc_read_buf () == 0x55) ? true : false; 

} 

Command 0xAB - Interface Test 

This command causes the controller to test the serial interface between the controller and 

the keyboard. The result of the test is placed in the output buffer that can be read on port 

0x60. 

The result can be one of the following: 

 0: Success, no errors 

 1: Keyboard clock line stuck low 

 2: Keyboard clock line stuck high 

 3: Keyboard data line stuck high 

 0xFF: General error 

As you can see, all of these are hardware errors. If an errors occurs, it is recommended to 
disable the keyboard and reset it. If it still fails, the keyboard might have malfunctioned. 

Command 0xAD - Disable Keyboard 

This command causes the controller to disable the keyboard clock line and set bit 4 

(keyboard enable) of the command byte. Please see the Read Command Byte section for 

the format of the command byte. 

In other words, this command disables the keyboard. 

It is a good idea to store the current state of the keyboard so that your system can keep 

track of the current status of the keyboard. This is done in the demos keyboard driver 
through _kkybrd_disable. 

//! disables the keyboard 

void kkybrd_disable () { 

  

 kybrd_ctrl_send_cmd (KYBRD_CTRL_CMD_DISABLE); 

 _kkybrd_disable = true; 

} 

Command 0xAE - Enable Keyboard 



This command causes the controller to enable the keyboard clock line and clears bit 4 

(keyboard enable) of the command byte. Please see the Read Command Byte section for 

the format of the command byte. 

In other words, this command enables the keyboard. 

Here is an example routine taken from the demo. Notice how easy this one is :) 

//! enables the keyboard 

void kkybrd_enable () { 

  

 kybrd_ctrl_send_cmd (KYBRD_CTRL_CMD_ENABLE); 

 _kkybrd_disable = false; 

} 

Command 0xC0 - Read Input Port 

This command reads the input port (lines P10-P17 on the controller) and copies the binary 

value to the output buffer that can be read through port 0x64. Because we have not looked 

at the lines that this port has, lets look at it now: 

 Line P10 / Bit 0: Keyboard data in, Unused in ISA 

 Line P11 / Bit 1: Mouse data in, Unused in ISA 

 Line P12 / Bit 2: Unused in ISA, EISA, PS/2 

 Line P13 / Bit 3: Unused in ISA, EISA, PS/2 

 Line P14 / Bit 4: 0: 512 KB motherboard RAM, 1: 256K RAM 

 Line P15 / Bit 5: 0: Manufacturing jumper installed, 1: Not installed 

 Line P16 / Bit 6: 0: CGA display 1: MDA display 
 Line P17 / Bit 7: 0: Keyboard locked 1: Not locked 

If a jumper is active, the BIOS may run an infinity diagnositic loop. Lines P13 and P14 may 

be configured for clock switching. 

Don't worry if these seems complex -- Looking at the above you can probably see that this 

command is not very helpful on modern computers. Bits 0, 1, 2, and 3 are no longer used 

anymore. Bit 4 is almost useless as all modern computers have way more then 512 KB of 

RAM. Bit 5 can be used to test if a jumper is installed for keyboard testing (Which almost no 

user will do). Bit 6 is not needed as you can get that information from the video adapter and 

bit 7 is almost never needed as most users would not want their keybord locked. Yep. very 
useful command, huh? It can be, just not for most computers. 

Because of the super usefulness (or lack there of ;) ) this command has to offer, I decided 
not to write a routine for it. 

Command 0xD0 - Read Output Port 

This command tells the controller to read from its output port (P2) and place the result in 

the output buffer at port 0x64. By reading from port 0x64 after issuing this command, we 

can check the bits of the controllers output port. 



The controllers output port is just the P20-P27 lines of the controller (Remember this from 

before?). The binary value on these lines are then stored into the output buffer when this 

command is executed. 

We have not covered the output port pins and what they are yet. (Well, actually we have in 

the A20 chapter, but not in detail) so lets look at it here: 

 Line P20 / Bit 0: 0: Reset CPU, 1: normal operation 

 Line P21 / Bit 1: 0: A20 line is forced, 1: enabled 

 Line P22 / Bit 2: Mouse data. Unused in ISA 

 Line P23 / Bit 3: Mouse clock. Unused in ISA 

 Line P24 / Bit 4: 0: IRQ 1 not active, 1: IRQ 1 active 

 Line P25 / Bit 5: 0: IRQ 12 not active, 1: IRQ 12 active 

 Line P26 / Bit 6: Keyboard Clock 

 Line P27 / Bit 7: Data to Keyboard 

Thats it. Bit 2 and 3 are no longer used in Industry Standard Architecture 

(ISA) computers (most modern computers). Bits 4 and 5 (lines P24 and P25) are 

connected to the Programmable Interrupt Controller (PIC) on the PIC lines IR1 and 

IR12. Thus, if the line is active the interrupt line is also active on the PIC (Which also means 

the interrupt may be executing or pending execution.) Bits 6 and 7 simply contain the 

current keyboard clock and data signal (Whether the line is active or not.) 

So far alot of the bits here are pretty useless, huh? Alot of these bits are at the electronics 

level of the current operation of the controller which is useless for our needs. That is, except 

for the first two lines (Bits 0 and 1) which control if we want to reset the system or 

enable/disable the 20th address line. Well, okay, reading bit 0 is useless also as the 

line must be active (1) meaning we are running in normal operation. Without it the system 

would reboot. Thus the only useful bit here is the A20 line. This is true for at least a read 

operation. 

When this command is issued on port 0x64, the resulting byte is placed in the output buffer 
and can be read by reading the byte from port 0x60. 

Im not worried about needing to disable A20 anytime soon. Also, there are alternative 

methods of resetting the system through the keyboard. Because of this, this command is 
pretty useluess for our needs and I decided not to write a routine for it. 

Command 0xD1 - Write Output Port 

This command copies the byte from the output buffer (port 0x60) and places the byte on 

the controllers output port lines. Please see the previous section (Read Output Port 

Command) for a description of these lines. 

For the most part, you would want to bitwise OR specific bits that you would like to change 

and keep everything else unchanged to prevent possible problems. 

This command is useful in several ways. It allows you to enable or disable the IRQ used by 

the controller, enable or disable the A20 gate, or even reset the system by setting bit 0. 

Again, please see the previous section for the list of the bits that can be changed. 



Command 0xE0 - Read Test Input 

This command copies takes the binary value from the test port lines on the controller and 

places them in the output buffer so they can be read through port 0x60. 

The test port are the lines TEST 0 and TEST 1 of the microcontroller (please see the 

controller pinout diagram in this chapter). Because we have not covered them yet, lets take 
a look: 

 Line TEST 0 / Bit 0: Keyboard Clock (input) 
 Line TEST 1 / Bit 1: AT - Keyboard data (input) PS/2 - Mouse clock (input) 

All other bits should be assumed undefined and should not be read. 

While this command might not be much of use; remember that the controller may be used 

in other fields where the test port may be more useful. After all, it is there for testing 

purposes. 

Command 0xFE - System Reset 

Causes the controller to pulse bit 0 of the controllers output port (pin P0) which resets the 

CPU. This basically does the same thing as sending the Write Output Port command 

resetting bit 0. Send this command if you would like to reset the system in a nice way. 
//! reset the system 

void kkybrd_reset_system () { 

  

 //! writes 11111110 to the output port (sets reset system line low) 

 kybrd_ctrl_send_cmd (KYBRD_CTRL_CMD_WRITE_OUT_PORT); 

 kybrd_enc_send_cmd (0xfe); 

} 

Keep in mind that this may not work on all systems. An easy way to see if it works or not is 

to see if your program is still executing after the above routine :) 

Demo 



 

The first interactive demo 

DEMO DOWNLOAD 

This is the most complex demo so far. It uses all of the code from the previous chapter 

along with an additional keyboard driver and basic Command Line Interface (CLI) to 

make things more interesting. Because of this, it is also our first interactive demo and can 
be extended upon with your own commands as well. 

This demo also adds the sleep () routine which is used to delay between each key read 

along with scrollling to the debug output console routines allowing the screen to scroll. 
Cool, huh? 

I am not going to cover the code for the CLI itself as it is meant to be very simple. Rather, I 
want to focus on some of the more important parts of the demo. 

Keyboard: Piecing it Together 

We have looked at some of the routines from this demos keyboard driver already. We 

looked over communicating with the keyboard encoder and controller; and even routines for 

several different important functions for enabling, disabling, testing, LED updating, system 

http://www.brokenthorn.com/Resources/Demos/Demo14a.zip


reset, and more. This is great, but we are missing a few important details that tie 

everything together. Lets take a look, shall we? 

Keyboard: Storing the current state 

As you know, you can press any of the keys on your keyboard at any time. Because of this, 

there needs to be a way to scan each key to see if they are down or not. The good thing 

here is that the keyboard encoder already does this! To make things more easier, the 

keyboard encoder sends the scan code directly to the onboard keyboard controller which in 

turns invokes IRQ 1. 

As long as IRQ 1 is not masked, we can install our own interrupt handler at IRQ 1 so that 

we can get notified whenever a scan code is sent from the keyboard encoder. What does 

this mean? Our interrupt handler will be invoked any time a scan code is sent to the 
keyboard controller. This can happen at any time. 

Because of this, we need to somehow determin what the scan code is inside of the handler 

by polling the keyboard controller for it. However, we may want to do different things if a 

key is down (like the caps lock or num lock keys). These keys supposed to stay on or off 

when they are pressed. Then, what about other keys like shift? These keys must be held 
down and released when the key is released. 

Because of this, we need to come up with a method of storing the current state of these 

keys and the last scan code read so that they can be retrieved again later after the IRQ has 

already returned. This can be done by storing the current state in a few global varables or a 
structure and simply using them. 

Keyboard: Interrupt Handling 

This one is important. Remember that, for each key stroke and key release several bytes 

(The scan code) is sent to the keyboard controller? When this occurs, the keyboard 

controller signals theProgrammable Interrupt Controller (PIC) to generate IRQ 1. Yes, 

dear readers, this in turn causes the PIC to execute our keyboard interrupt handler. 

The purpose of the interrupt handler is to update the current state of the driver and to 

decipher the scan code by converting it to a format that can be used by the driver and the 
system. Yep, thats all that is to it ;) 

The interrupt handler is what ties everything together. It is a little big so I decided to not 

put it in this text, however I urge everyone to take a look at it to see how it works. 

Keyboard: Initialization 

Remember that the keyboard controller is connected indirectly to the programmable 

interrupt IRQ 1 line? Because we mapped the IRQs using the PIC to start from interrupt 

vector 32 (IRQ 0), IRQ 1 is at interrupt vector 33. Because of this, we need to install our 

interrupt handler using our setvect routine to use interrupt vector 33. 

Everything else is pretty simple. We simply clear out the current driver state (stored as 

globals) and clear the LEDs using our kkybrd_set_leds routine. 



//! prepares driver for use 

void kkybrd_install (int irq) { 

  

 //! Install our interrupt handler (irq 1 uses interrupt 33) 

 setvect (irq, i86_kybrd_irq); 

  

 //! assume Basic Assurance test (BAT) test is good 

 _kkybrd_bat_res = true; 

 _scancode = 0; 

  

 //! set lock keys and led lights 

 _numlock = _scrolllock = _capslock = false; 

 kkybrd_set_leds (false, false, false); 

  

 //! shift, ctrl, and alt keys 

 _shift = _alt = _ctrl = false; 

} 

Conclusion 

Thats it for this chapter! The system is starting to get interesting, don't you think? We can 

possibly expand on this demo to make it actually useful to an extent, which is nice. 

However, we are rather limited in what we currently can do. Wouldn't it be useful if we can 

run other programs to do our work for us? Or even to load other files from disk? While 

abstracting a complete filesystem structure is very complex topic; we can, however, focus 

on loading files from a single disk. 

However, we run into a problem. In order for us, at the minimum, be able to load a file from 

disk we have to program the Floppy Disk Controller (FDC) first. This is the topic for the 
next chapter. Hope to see you there! :) 

Until next time, 

~Mike 
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